翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hodges’ estimator : ウィキペディア英語版
Hodges' estimator
In statistics, Hodges’ estimator (or the Hodges–Le Cam estimator), named for Joseph Hodges, is a famous counter example of an estimator which is "superefficient", i.e. it attains smaller asymptotic variance than regular efficient estimators. The existence of such a counterexample is the reason for the introduction of the notion of regular estimators.
Hodges’ estimator improves upon a regular estimator at a single point. In general, any superefficient estimator may surpass a regular estimator at most on a set of Lebesgue measure zero.
== Construction ==
Suppose \scriptstyle\hat\theta_n is a "common" estimator for some parameter ''θ'': it is consistent, and converges to some asymptotic distribution ''Lθ'' (usually this is a normal distribution with mean zero and variance which may depend on ''θ'') at the :
:
\sqrt(\hat\theta_n - \theta)\ \xrightarrow\ L_\theta\ .

Then the Hodges’ estimator \scriptstyle\hat\theta^H_n is defined as
:
\hat\theta_n^H = \begin\hat\theta_n, & \text |\hat\theta_n| \geq n^, \text \\ 0, & \text |\hat\theta_n| < n^.\end

This estimator is equal to \scriptstyle\hat\theta_n everywhere except on the small interval , where it is equal to zero. It is not difficult to see that this estimator is consistent for ''θ'', and its asymptotic distribution is
: \begin
& n^\alpha(\hat\theta_n^H - \theta) \ \xrightarrow\ 0, \qquad\text \theta = 0, \\
&\sqrt(\hat\theta_n^H - \theta)\ \xrightarrow\ L_\theta, \quad \text \theta\neq 0,
\end
for any ''α'' ∈ R. Thus this estimator has the same asymptotic distribution as \scriptstyle\hat\theta_n for all , whereas for the rate of convergence becomes arbitrarily fast. This estimator is ''superefficient'', as it surpasses the asymptotic behavior of the efficient estimator \scriptstyle\hat\theta_n at least at one point . In general, superefficiency may only be attained on a subset of measure zero of the parameter space Θ.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hodges' estimator」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.